LEGIBILITY NOTICE

A major purpose of the Techni-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained In
DOE’s Research and Development
Reports to business, industry, the
academic community, and federal,
state and locai governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

1

“LAUR-89 - 2607

Los Alamos Nauonal Laboratory 's operated by the University of Cahformia for 1he United States Department of Energy under contract W-7405-ENG-36

LA-UR~--89-2607
DE89 016607

TITLE Vectorization of Monte Carlo Particle Transport:
An Architectural Study Using the LANL Benchmark "GAMTEB"

Patrick J. Burms
Mark Christon
Roland Schweitzer
Olaf M. Lubeck
Harvey J. Wasserman
Margaret L. Simmons
Danicl V. Pryor

AUTHON(S)

SUBMITTED TO IEEE Superconputing '89

Reno, Nevada, November 13-17, 1989

DISCLAIMER

Thin report was prepared an sn sccount of work sponsored by an agency of the United States
Government. Nuither the United Stutes Government nor sny sgency thereol, nor any of their
emplovee i, mukes any warranty, express or implied. of sasumes any legal hiability ur responwn-
bility for the s~curacy, completeness, or usclulness of any infotmation, apparstus, product, or
proves i closed, o represents that its use would nut infringe privately owned rights. Refer
ence heren o any apecific commercinl product, process, or service by trade name, tradlemark,
manufacturer, or otherwise does not necemarily constitute or imply 1ta endorsement, recom-
mendation, or favoring by the Unitod States Governmient ur any ugency thereof The views
and apinions of suthora expressed herein do not necessatily state or reflect those of e
United States CGovernment of any sgency thereof

By acceplance of thug arhicle Ihe pubbsher rrcognizes that the U S Government retming a noneaciusive royaity | se hcense to pub'ith or reproduce
the pubilimheg form of this continubion o (g alow olhery 10 do 80 for U S Covernment purposes

The Los Alamaon Habional | aiiratiny (equestis 1hal Ihe publishat debtily e atlicle ay work petlormenl under the auspices of the U 8 Deparimant of £nergy

MA
Los Alamo t83ﬁl2$8§.ﬁ2“&’&%§2%°8’%‘§'g :l\

anmasaes mnama DISTRIRLITION AL TLaG M/ 18 ama e tm s e e an

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

Vectorization of Monte Carlo Particle Transport:
An Architectural Study Using the LANL Benchmark "*GAMTEB”

Parrick J. Burns, Mark Christon And Roland Schweirzer
Colorado State University
Dept. of Mech. Engr. and Univ. Computer Center
Fort Collins, CO 80523

Olaf M. Lubeck, Harvey J. Wasserman, Margaret L. Simmons
Computing and Communications Division
Los Alamos National Laboratory
Los Alamos, NM 87545

Daniel V. Pryor
Supercomputing Research Center
17100 Science Drive
Bowie, MD 20715-4300

Abstract

Fully vectorized versions of the Los Alamos National Laboratory benchmark code
Gamteb, a Monte Carlo photon transport algorithm, were developed for the Cyber
205/ETA-10 and Cray X-MP/Y-MP architectures. Single-processor performance meas-
urements of the vector and scalar implementations were modeled in a moditiecd Amdahl’s
L.aw that accounts for additional data motion in the vector code. The performance and
implementation strategy of the vector codes are related to architectural features of ¢:ch
machine. Speedups between fifteen and eighteen for Cyber 20S/ETA-10 architectures,
and about nine for CRAY X-MP/Y-MP architectures are observed. The best single pro-
cessor execution time for the problem was (.33 scconds on the ETA-10G, and .42
seconds on the CRAY Y-MP.

Keywords: vectorization, parallel algorithm, branching, sparse operation, gather,
scatter, Monte Carlo.

1. INTRODUCTION
1.1 General

Monte Carlo methods, introduced by Ulam and Von Neumann [1], have received
intermittent but continuing attention from the research community [2-9]. Present super-
computers are sufficiently powerful to simulate ‘‘real’” problems in some instances. but
many problems are still CPU bound. The advent of gather/scatter hardware, available in
supercomputers since 1981, has made the efficient vectorization of such problems possi-
ble. The random and a priori unknown branching implicit in such algorithms generally
necessitates a full recasting of the aigorithm before it con be vectorized, often an impos-
ing task. Perhaps this is why this topic has been addressed only recently by the research
community.

Brown [10] first developed a strategy to vectorize neutron transport, where the vec-
torization was over the particles in a single cell. He reported theore:ical (not observed)
speedups of up to 40 for an event-based algorithm on a Cyber 205 over an Amdahl
470V/8. Manin et al. [11] reported, for a vectorized zonal approach of tracing photons in
axisymmeuric enclosures, speedups of order 5 over optimized scalar code on Cray-1 and
single processor Cray X-MP machines, ard about twice that observed on a CDC 76(0. A
parallel processor photon tracing code (coarse-grained paraltlelism) has been imple-
mented by Sequent Computer Systems [12], and is reported to have achieved nearly
linear speedup when applied to 12 processors. Bobrowicz et al. developed vectorized
codes for both photon [13] and neutron [14] transport based on the physics in the MCNP
[15] production code. They accumulate particles in queues until some optimal number is
reached. In this way, arithmetic operations are delayed until they can be done at efticient
vector lengths, yielding speedups of approximately eight. Simmions and Wasserman
have also developed a multitasking version of MCNP for the CRAY-2 and CRAY X-
MP[16]). Pryor and Burns [17,18] have achieved speedups of 13 to 30 for iwo-
dimensional photon tracing problems on the Cyber 205. Maltby [19] reported speedups
of 11 to 16 for a three-dimensional photon tracing algorithm, also on the Cyber 205, In
those studies, vector lengths were kept long by emitting new photons whenever old ones
were cither absorbed or transmitted.

1.2 Scope of Present Effort

The task we have undertaken is to vectorize the Los Alamos National Laboratory
benchmark Gamteb, which is virtually unvectorized {20] in original form. ‘The Gamieeh
algorithm simulates the axiai emission of photons from a source adjacent to the face of a
long, narrow cylinder, i the direction of the face at the other end. Photons are traced
until they escape through the cylinder wall, are transmitted through the opposing tace. or
are backscattered through the adjacent face. Although the geometry is simple, the physi-
cal inteructions are quite challenging to simulate, including the generivion of new pho-
tons through collision processes and variance reduction tecnniques.

This paper describes implementations of the vectorized Gamteh on the ETAT0 G
and CRAY Y-MP supercomputers. The new implementation was initially designed tor
the CYBER-205 at Colorado State University, making substantial use of the CDC vector
primitives. This code was then translated into a version that could run on the CRAY X-
MP, following which, u new version, more suitable for the CRAY, was developed.

-3

These machines have diverse architectural features that render the implementation ot a
vectorized Monte Carlo algorithm of interest to the research community. For concise-
ness, we will refer to an ETA impiementation, which encompasses the ETA-10 and the
Cyber 205, and a Cray implementation, which refers to the CRAY X-MP and Y-MP.
although we also present results for a dvnamic memory CRAY-2 (SN 2007).

It is useful to examine the present effort in the context of previous work. Previous
applications to photon tracing between surfaces where particles do not interact [17-19)]
were algorithmically simple, but involved very complicated geometries. Substantial
effort went into construction of a very efficient, vectorized surface intersection loop. A
more complicated application to Molecuiar Aerodynamics [21-22] incorporated particle-
particle interactions, and had the further difficulty of requiring temporal syachronization
among grid cells. Yet the geometry was the. simplest possible -- one dimensional. Vari-
ous facets of that problem resulted in short vector lengths, and consequently, poor perfor-
mance on the Cyber 205.

The present work represents a mix of features from these previous applications.
The geometry is simple, and the physical particle interactions are moderately complex.
Particles interact in a limited sense through selective production of pairs during certain
collisions. No synchronization is required, and vector lengths should, on average, remiin
long (but will decay to zero as the simulation terminates). However, the present algo-
rithm incorporates variance reduction techniques. including splitting and Russian
Roulette (to be discussed in Section 2), which complicate the data motion. These features
make the present effort an ideal logical extension to the previous work.

Our approach is conceptually very similar to that of Bobrowicz et al. {13}, where
particles were accumulated in multiple queues (a total of fourteen were required) until
vector lengths become long enough for efficiert computation. Our method differs in that
we form only two queues. In this fashion, we defer the intermediate overhead of **hand-
ing off’’ particles to queues until all logical operations have occurred for the operation,
Also, we incorporate the complexity inherent in the variance reduction strategies men-
tioned above. Finally, we explore in greater detail the performance of the alzorithm over
a wide range of vector lengths, and investigate random data motion, as it applies to
Monte Carlo methods, on vector architectures.

The goal of this work is to compare the architectural and software features ot the
ETA and CRAY systems that play important roles in these types of problems. We will
do so in terms of a theoretical framework that is general to any vector processor. We will
also discuss some of the tradeoffs we encountered in implementing the codes and
describe the vector algorithms in detail.

2. PHYSICAL MODEL

Gamteb is an implementation of a Monte Carlo photon transport algorithin, Pho
tons are traced from birth to death, through intermediate collisions with the medium, As
collisions occur, photon energies and numbers may vary. In Monte Carlo panticle tracing
algorithms, these situations are handled as follows. Each logical particle trace consists of
a number of monoenergetic photons that are dealt with algorithmically us a single unit,
This unit is loosely referred to as a particle, with two properties characteristic of the

-4-

energy content - the energy of the phntons (referred to as the energy value), and the sta-
tistical importance of photons (referred to as the partcle weight). As photons are
absorbed, the particle weight decreases. As the particle interacts with the medium, the
energy value decreases. The product of these two quantities determines the total energy
content of the particle. To distinguish physical from algorithmic quantities, we will refer
to algorithmic quantities as particles and physical quantities as photons. We now
proceed with a discussion of the physical model.

Gamteb calculates the transport of gamima rays in a carbon cylinder of radius 1 and
length 30. The geometry is pictured in Figure 1, showing the cylinder wall (surface 2),
the left end (surface 1), the right end (surface 4), and the internal partition (surface 3).
The source is at Surface 1, with photons being emitted to the right along the major axis of
the cylinder. Surface 4 is the target. Photons that exit through surfaces 1, 2 and 4 arc
referred to as ‘‘backscattered,’’ ‘‘escaped’’ and ‘‘transmitted,’’ respectively. We want to
determine the combined weights of particles that exit each surface, as a function of
energy level (35 encrgy levels are used). In this paper, for simplicity, we report only the
total number of particles (summed over ail 35 energy levels) that pass through these sur-
faces.

Y=0 Y=20 Y=30
- D=2
/ f Surface 4
D\/ L\ “Transmitted"’
Surface 1 Surface 2 Surface 3
‘‘Backscattered’’ ‘*Escaped’’ Internal Partition
Figure |

The physical system.

Surface 3 differs from the other surfaces in that it is only a logical surface, i.c., it
partitions the geometry into an ‘‘uninteresting’’ portion (the left portion), and an
‘‘interesting’* portion (the right portion). This artificial construct is used to improve the
statistical properties of those particles transinitted (i.e., improve the accuracy of the
answer), and simultaneously reduce the amount of (less useful) work to be done.
Because the geometry is long and thin, few of the original particles will strike the target -
resulting in poor statistical convergence. The convergence of the simulation varies as
1/sqri(N), while the time is proportional to N, where N is the (otal number of particles
tracked. An optimum balance between accuracy and runtime 1s done with biasing, the
assignment of more importance to particles near the target. In Gamteb this is done by
**splitting’’ those particles that cross the internal partition from left to right. Upon split-
ting, particle weights are halved, und then each particle is ‘‘cloned.’’ (Note that this
preserves the total number of photons, and ensures conscrvation of cenergy.) This
requires that daughter particles be traced along with the parent particles. Heifetz has

-5-

given a particularly lucid explanation of such variance reduction techniques | 23].

Similarly, the strategy of Russian Roulette reduces the amount of work tracing
‘‘uninteresting’’ partcles (i.e., those moving away from the targer). Particles which
cross the internal parttion from right to left undergo Russian Roulette, where a random
half (from a uniform distribution) ‘‘die,’”’ and the remainder each have their weights dou-
bled. We rely on the fact that the random sample of that half of paricles which ‘‘die,””
will, on average, have a total energy product equal to that of the survivors. Large
numbers of particles are required for this assumption to be valid.

The physical model employed is relatively realistic for photons, although the
geometry is very simple (few surfaces and oniy a single material). Photons may interact
with the medium in a variety of ways. A particle may undergo: (1) energy exchange
scattering with the medium into a direction dependent upon particle energy, (2) ‘‘pair
production,’” where a pair of lower energy particies are produced that travel in randor
directions, or (3) absorption by the medium. All of these interactions are dependent on
energy by virtue of energy-dependent cross sections for scattering, pair production, and
photoionization.

The algorithm is thus illustrative of complex physical phenomena and not of com-
plex geometrical aspects. This particular example was chosen as a representative test
casc for vectorization of the physical aspects, and as such is a reasonable first step in an
effort to assess whether such methods should be further investigated through inclusion of
arbitrary geometries and numbers of materials.

2.2 Approaches to Vectorizing Monte Carlo

The Monte Carlo particle transport model described above can be viewed as a
binary decision tree (see Figure 2). A descriptive picture of a transport execution is to
view a particle as being inserted into the top of this tree. As the calculation progresses,
the particle drops toward the bottom bouncing randomly either left or right (depending
on the physical process cross sections, the chosen random numbers, and the characteris-
tics of the particle itself) much like a ball in a pinball machine. Some of the branches
may consume the particle, others may unleash more particles. Almost all branches
change some particle characteristic. In any case, the particle and any daughters ¢ither are
consumed or drop to the bottom of the tree where th*y are then reinserted at the top with
new characteristics.

If one particle at a time traverses the tree, the execution is scalar. If a continuous
stream of particles is ‘‘dumped’’ into the top so that the particles make their way toward
the bottom independently, the computation proceeds as asynchronous parallel processes.
Finally, the more organized model of synchronous vector computation consists of a batch
of particles dumped into the top that san undergo separation into smaller batches at each
branch. The way in which this separation is carried out, as well as when the separations
are carried out, are two important differences between the ETA and CRAY implementa-
tions of vector Gamteb.

We illustrate the operation of the vector code with a pictorial example wracing 5(X)
particles. We have instrumented the code tc obtain particle positions after cach event,
We frame our discussion around an example of relatively few particles. Five hundred
particles are used in this test case, 250 of which are launched for the tirst event. ‘This is

INTERACTION
WITH MEDIUM ?
YES NO
TRANSPORT CROSS [NTERNA”
PARTICLE PARTITION ?
| PES NO
PHOTOELECTRI(FORWARD TALL
WEIGHT CUTORF CROSS ALLY
YES YES
NO WEIGHT CUTOFF] TRANSPORT NO
COMPTON \YES SpLIT RUSSIAN ROULETTE
SCATTER ‘* DIE ?
NO \
YES \ YES
KLEIN- | PARR \\
NISHINA I PRODUCTION
ENERGY
CUTOFF
” NO
YES .’
¥V

LOGO

———

------ > TERMINATq

Figure 2
Binary Decision Tree

done to illustrate the operation of the algorithm for large numbers of particles since the
remaining particles will be launched as storage space allows in subsequent event steps.
We depict in Figure 3 particles at the end of each event step by particle position. Particle
positions, even though calculated in three-dimensional Cartesian coordinates (X.Y.Z),
are displayed in two coordinates: radius - R, and position along the cylinder axis - Y (for
illustrative purposes, we neglect the angular position). The dotted lines in the figures
represent the internal partition, and :he axis of the cylir.der.

To begin the simulation, 250 particles are emitted from the source. Of these, $1
arrive at the internal partition and undergo splitting. Of the remaining 169, 149 undergo
Compton scattering in the left cylinder, and the 20 remaining produce low-energy pairs.

(a) End of Event 1. (b) End of Event 2.

(c) End of Event 3. (d) End of Event 4.

(e) End of Event 5. (f) End of Event 6.
Figuv-* 3

Photons Positions at Ends of Events 1-6.

-8-

Two hundred fifty new particles are emitted at the beginning of Event 2; a total of
581 particles are then traced during this event. Of these: 227 strike an exterior surtace
and are tallied, 94 cross the internal partition to the right and are cloned, 241 undergo
Compton scattering in the left cylinder, and 19 produce pairs.

In our exzmple the third event proceeds much like the second, leaving 138 parricles
active to start the fourth event. During the fourth event, 1 particle crosses the internal
partition to the right and splits, while 2 cross to the right and undergo Russian Roulette --
one dies, while the other lives. The fifth event produces one additional particle that
undergoes Russian Roulette and dies.

After taking into account the particles that cross an external surface of the cylinder
and the one that dies through Russian Roulette, only 7 particles remain active for event
six. The surfaces of intersection and the travel distances are determined for these 7 parti-
cles. Six escape through the cylinder wall, and one is transmitted through surface 4. At
this point, all original 500 particles aad all of their children have been traced and under-
gone disposition. Final tallies are computed for the escaped, transmitted and back-
scattered particles; these are then divided by the number of emissions and the simulation
is complete.

We now turn our attention to the random branching evident in the above example.
‘The random branching occurring at each node of the decision tree may be dealt with in
three ways. The first method physically divides the particle batch by copying all particle
characteristics into separate contiguous storage regions. The advantage here is that sub-
sets are easily tracked through the tree by their base addresses and lengths. The overhead
associated with this involves the generation of two vectors of indices, two gathers, and a
subsequent vector merge at the end of each event step. However, this overhead is amor-
tized over the number of computations at each node, and the computations are performed
at successively reduced locp lengths as the particle batch travels down the tree.

Alternatively, particles may be logically partitioned using two other strategies in
which no actual movement of particle data occurs. The first of these uses a logical vector
to track the particles on which computation is to be done. The use of logical vectors
requires the compos.tion of muliiple vectors at each lower branch point. The length of
any loop that comes after a branch is still the number of particles in the original batch.
The other strategy uses two index vectors whose values are the particle indices belonging
to each subset. We call this the "indirect method." The use of the indirect method results
in loop lengths that are exactly equal to the number of particles in each subset. However,
the memory access patterns are of the gather/scatter type and may not be suitable to some
architectures.

In general, the higher the level in the decision tree, the greater advantage there is to
physical partitioning. Specific advantages/disadvantages of each strategy must also be
considered in the context of machine characteristics. The truth ratio of each branch is5 not
important when two physical subsets are to be formed, but becomes quite important
when subsequent computation is to be carried out on only one branch. This one-branch
case is found in Monte Carlo situations where a “‘sieve’’ type technique must be used. In
Section 5 we present some performance data that comment on the tradeoffs between all
three methods.

-9.

3. A MODIFICATION OF AMDAHL’S LAW

We now develop an extended version of Amdahl’s law [24] to illustrate the speedup
to be gained by 1napping a scalar problem onto vector hardware where the resulting algo-
rithm has a large component of data motion. By data motion we mean either of the fol-
lowing: (1) Operations that rearrange elements in memory to improv: performance of
vector memory operations, i.c., physical partitioning. This can be either movement of
clements from random locations into contiguous memory locations or scatter of resultant
elements back into non-contiguous locations. (2) Excess memory fetches and computa-
tions that are ignored (not stored) so that the remainder of the computations may be done
in the vector hardware (i.e., logical partitioning).

The modification of Amdahl’s Law proceeds as follows. Let S be the scalar execu-
tion rate, V the vector execution rate, p the fraction of time spent in the vector hardware,
F the ratio of time spent in the vector hardware due to memory latency to that time spent
performing useful computations (i.c.. vector start-up), and D be the ratio of time spent in
the vector hardware doing data motion to that time spent doing useful computations.
Then the speedup, R, of the vector code over the optimized scalar code is given by

R = L (1)

(1—p)+p(—f;)[1+F+Dl

Figures 4(a) and 4(b) show plots of R versus p, with D varying parametrically. We
have isolated portions of Gamreb and independently measured values of V/§ in excess of
11 on the Cray Y-MP, and values of 17.18 and 24.05 on the Cyber 205. Thus, we select
values of V/S of 12 and 20, representing, approximately, Cray and Cyber 205 hardware.
(We demonstrate in section 5 that S for the ETA10 scales to about 30% less than the
ratio of clock speeds, but that V scales approximatiely equal to the ratio of clock speeds -
thus a value of V/S = 25 is appropriate for ETA10 architectures.) Note that the resuits
are valid when D > F, or if D is viewed as the aggregate of D and F.

Note that Equation 1 defines a ratio between scalar and vector performance. The
ratio may be large either as a result of high vector rates, V, or because of low scalar rates,
S. In this case, the ETA architectures have both lower scalar rates as well as higher
asymptotic vector rates than does the the CRAY X-MP, and therefore, larger values of
V/§. Finally, note that for large values of V/S, p must be large to achieve substantial
benefit, especially with the added penalty of D. Thus. for machines having smaller rela-
tive values of V/§, codes do not have to be as highly vectorized to achieve near-peak
performance. Of course, absolute performance, i.e., the timings of the vectorized imple-
mentations, are the bottom line.

4. ARCHITECTURAL and COMPILER CONSIDERATIONS
4.1 General
ETA architectures are bit addressable [?5], with memory-to-memory vector execu-

tion, and 256 scalar registers. The ETA-10 can access memory contiguously, with con-
stant strides, or with scatter/gather. However, each memory access fetches a superwvord

-10-

12
10
8
SPEEDUP 6
4
2
0‘
0 0.2 04 0.6 0.8 |
% VECTOR
(a) Cray
20 r T
15L V/S =20
SPEEDUP 10}
5
0] _] 1 |
0 0.2 04 0.6 0.8 1
% VECTOR
(b) ETA
Figure 4

Speedup vs. Percent Vectorization From Modified Amdahl’s Law.

(eight 64-bit words), and so performnance for non-contiguous fetches can degrade by up
to a factor of eight [26,27]. Their scalar performance is weak, simply because of their
relatively slow cycle times (except the liquid nitrogen cooled model G, which has a cycle
time of about 7 nanoseconds). To offset this, more effort imust be spent in vectorizing the
code. To achieve good performance, we have explicitly vectorized the ZTA algorithm
using the Q8 Fortran ¢xtensions [28]. Implemented as in-line instructions, these allow
the programmmer to access the vector hardware with very low overhead -- an important
feature in Monte Carlo simulation. We also make extensive use of bit vectors, for econ-
omy of storage, and to allow logi:al operations to proceed at approximately 8 times the
rate per result as for full-word operations.

-11-

An inescapable penalty is lack of portability. Also, vector lengths cannot exceed
65,535 due to compiler limitatons (longer vectors must be explicitly strip-mined). This
is not an issue here, as we have designed the algorithm such that all vector lengths are
bounded by this maximum. We also structure the data so that it fits entirely within local
memory; thus no paging of the virtual system occurs.

The CRAY X-MP/Y-MP [29] is a shured-memory, word addressable architecture
with local scalar, address and vector registers. Performance on short vectors is good, as
is scalar performance. Memory access supported by Cray hardware includes contiguous,
constant stride and scaiter/gather. Cray performance for long constant-stride vecrors is
the same as for contiguous vectors{20], provided that bank-conflicts (power of 2 strides)
are avoided. For a large class of (traditional) problems, goo ' performance can usually be
obtained in a fashion almost transparent to the user. Cray FORTRAN implementations
lack an explicit bit data type, and deny the programmer access to vector masks (even
though they are used internally). However, this disadvantage is offset because
scatter/gather operations are efficient on the X/Y-MP architectures [20.26].

Finally, ve note that all Fortran compilers exhibit deficiencies in some key arcas.
Some can be easily circumvented, but others require complete redesign ot algorithms.
Currently, no compiler is sophisticated enough to vectorize *‘vanilla’’ scalar Monte Cirlo
code, and there is little expectation that such a feat will be accomplished soon.

4.2 Performance on Random Data Motion

A factor of great importance in Monte Carlo simulation is the ability of the
hardware to perform data motion operations efficiently. This situatior has not been fully
explored for random data motion. In this section we attempt to clarify some of the issues
that arise in vectorizing Monte Carlo algorithms. We look at the component operations
involved in the data motion aspect of the problem, with a view toward quantifying the
tradeoffs that will likely be encountered in general situations. Thus we consider the
atomic operations of index list generation, logical vector generation, and the actual
movemert of data by gathering. As we attempt to show, the choice ot method is depen-
dent on input vector length, truth density, number of operations to be done on the parti-
tioned set, and the number of associated vectors required for further computation. The
issues are complex, but an understanding ot these basic timings can lead to intelligent, if
not always optimal, use of these machines.

To perform vectorized gather/scatter operations, a vector of indices is required. The
generation of such a vector is not currently vectorized by Cray's CFT77 compiler (or for
that matter, by ETA's compiler, but a variety of vector ETA Fortran extensions exist for
such purposes). The standard Fortran is as follows (where RANDOM(I) is a vector of
uniformly distributed random numbers):

K=0
DO1001=1, LENGTH
IF (RANDOM(D) .LT. DENSITY) THEN
K=K+1
INDEX(K) = |
ENDIF

-12-

100 CONTINUE

Note that this loop gencrates only the ‘‘true’’ index list of the physical partition -- an
additional operation is required to obtain the ‘‘false’’ index list. Cray’s library of
scientific subroutines, SCILIB (30], does provide a set of subroutines (e.g., WHENFLT,
WHENFGE) that generate the vector of indices in the vector hardware. However, sub-
routine overhead is incurred for each call. This could be a potential drawback in general,
although in GAMTEB we have found the overhead to be small (= 0.5%).

If one adopts the logical partitioning approach, after generating the logical vectors
(i.e.., an integer is set to 1 wher the condition is "true” and O when "false”), the SCILIB
routines WHENEQ and WHENNE may be used to generate indices. Using this
approach, one can with logical vectors do a series of operations encompassing one or
several levels in the binary decision tree, then use the WHENEQ or WHENNE routines
to generate lists of indices for & subsequent vector merge. As we show below, this avoids
the substantial nverhead of generating indices, and has been found to be the most effec-
tive strategy for both architectures.

In the data below, we plot execution rates in millions of operations per second
(MOPS) versus original vector length, with d=nsity varying parametrically. The deusity
is specified in the loop above, with uniformly distributed random numbers in the interval
(0.1). Where the random number is less than the density, those elements are gathered.
Thus, elements in random locations are gathered.

4.2.1 CRAY Y-MP

Figure 5 presents CRAY Y-MP execution rates for generating the vector of indices,
INDEX, versus input vector length, LENGTH. These are results from Cray's SCILIB
routines WHENEQ), generated in the vector hardware. Execution rate in Figure § is the
ratio of the number of generated indices to the time. The density varies from ().1 10 (.9 in
increments of 0.2 (n.b., the randomness occurs in location, not frequency of occurrence).
Also included are results from the (scaiar) FORTRAN code above for a density of 100%
(execution rates for lesser densities scale as the density). Asymptotic vector execution
rates are dependent upon density, ranging from 6 MOPS for a 10% density to 10 MOPS
for a 90% density. The code for WHENEQ consists of both comparing and index incre-
menting. The time for comparison is constant over the entire range of truth raiios, while
the time for incrementing increases with increasing truth ratios. Thus, lower rates of
index production are observed at lowest density.

It is worth mentioning that often we recjuite index lists for both branches ot the con-
ditional. As currently implemented, SCILIB has no routine to accomplish this
efficiently, without making a call to, say, WHENEQ tollowed by a second call to
WHENNE. In fact, one routinc could easily produce two index lists, one for cach
branch, where the time would be less than the total time for two calls.

Figure 6 presents CRAY Y-MP execution rates for vector gather operitions versus
vector length. These data are independent of truth ratio because no unnccessary elements
are gathered. The execution rates for these gathers are roughly an order of magnitude
greater than those for index generation (Figure 5), showing that explicit generation of
indices using SCILIB routines is a significant bottleneck. To guin good overall execution
rates, the time for the SCILIB routines must be amortized over many floating puimt

-13-

operations.
50 T] T
DENSITY =0.1
40| -
30 -
MOPS

204 _
10 $h——

=== SCALAR

0 1 I 1]

8 32 128 512 2048 8192
INPUT VECTOR LENGTH
Figure §
Cray Y-MP Execution Rates for Generation of Index Vectors.
150 1 T T T 1
90 -
MOPS
“r y
30 ~
ob—0 1 11y 1
16 128 1024 8192
INPUT VECTOR LENGTH
Figure 6

Cray Y-MP Execution Rates for Random Gathers.

4.2.2 ETAIO0

In this section, we present results from runs performed on the Cyber 205
Colorado State University. We use these as representative of ETA architectures, when
appropriately scaled. However, there are slight differences in the architectures that must
first be accounted for. In the ETA line, some scalar speed wus sacrificed 1o yield
decreased vector startup times. Therefore, short vector performance scales faster than the
clock .ate from the CYBER to the ETA, while performance on long vectors has been
observed to scale directly according tc clock rate. In any case, the differences between

-14-

ETA. and Cray architectures are substandal, making the differences between the ETA and
Cyber 205 architectures of lesser significance.

On ETA architectures, there are three ways to perform data motion, each with rela-
tive advantages within an operating scenario. First, we examine the rates at whict. vector
‘‘control’’ operations can be performed. These include, in Figure 7, the rates at which bit
vectors can be gen~rated and then used to either: (1) directly perform a vecior compress,
or (2) generate a vector of indices by performing a vector compress on an array of
integers in sequence from 1 to 65,535. The compress preserves original order, and as
such is a special case of a gather operation. The gather does so in this context as well.
Execution rates are shown in Figures 8 and 9, for the: (1) compress, and (2} subsequent
gather, respectively. Note that, in Figure 7, execution rate is based upor the number of
logical bits constructed (both true and false), while in Figures 8 and 9 rates are based on
the number of elements resulting from the compress or gather, respe...ively.

100

T T —

0 | A
10 100 1000 10000

INPUT VECTOR LENGTH
Figure 7

Cyber 205 Execution Rates for Construction of Bit Vectors,

These operations, as implemented, recult in an explicit bit vector, which can then be
used (multiple times) in subsrquent operations for further partitioning. Such is useful
when the algorithm contains nested data motion -- typical in Monte Carlo simulation,
For example, logical operations on two logical bit vectors (e.g., for those photons which
intersect surface 3, and for ..10se which are truveling to the right) yield a third bit vector
which can then be used for additional control (e.g., the logical AND of these two yields a
control bit vector for spliiting). These operations are very fast on the ETA because, as
the stream mte from memory remains the same, multiple resv'tants are pencrited in cach
pipeline per clock tick. Execution rates for logical operations on bit vectors are shown in
Figure 10. Use of bit vectors also substantially reduces memory requirements.

The generation of bit vectors proceeds independent of density, and approaches an
asymptotic rate of about 100 MOPS. This is from two to ten times as fast as the generi-
tion of indices on the CRAY Y-MP. The asymptotic exccution rate of the COMPRLESS
operation is nearly linear as a function of density, varying from about 10 MOPS at 107%
density to 90 MOPS for full operations. GATHER operations, alternatively, have

-15-

100 T l
DENSITY= 1.0
80 -
60 -
MOPS
40r- .
204 -
0 1 I
10 100 1000 10000 100000
INPUT VECTOR LENGTH

Figure 8

Cyber 205 Executon Rates for Random Compresses.

40

' DENSITY=_10

30

MOPS20

10

0 | L 1
10 100 1000 10000 100000
INPUT VECTOR LENGTH
Figure 9

Cyber 205 Execution Rates for Rundom Gathers.

execution rates nearly independent of density, with asymptotic execution rates of approx-
imately 35 MOPS. Thus for densities greater than about 35%, it is more cconomical (o
perform a COMPRESS, especially when including the additional overhead of index gen-
cration from the bit vector. Gathers on the Cray proceed at higher rates than on the
Cyber 208, but generation of indices priceeds at higher rates on ETA architectures.
When the Cyber 205 rates are scaled to the clock of the ETA10-G (7 ns vs. 20 ns), the
asymptotic rate for gathers is approximately equal to that of the CRAY Y-MP. Note that
Cray performance is good at low densities, and ETA performance is goad at high densi-
ties.

-16 -

800

600 -
MOPS 400}

200}

0 | 1
10 100 1000 10000
INPUT VECTOR LENGTH
Figure 10

Cyber 205 Execution Rates for Bit Operations.

The single remaining strategy for data motion is the ““WHERE’' operation, for
which calculations arc performed using the entire vector, and results are stored only
where the logical is set (‘““TRUE'’). This operation can be done using an existing control
bit vector, or by specifying a logical vector (¢.g., vector 1 .L.T. vector 2), in which case it
displaces the generation of the bit vector and index list, the gather, and the subsequent
scatter. ““WHERE'' operations incur a constant overhead of about 100 nanoseconds,
independent of vector length and density. As such, they are very cfficient for re'atively
full operations, and for locations near the bottom of the decision tree where there is little
additional partitioning to be done.

We have choser. .0 combine the strategies of us‘ng bit vectors and WHERE con-
structs in the ETA implementation. This avoids the relatively slow gathers (here, we
assumed a priori that the data motion would not be sparse; however some operations
were). We use bit vectors that encompass several levels of the binary decision tree. This
allows the intcrmediate logical operations to proceed at bit vector rate at the expense of
vector computations of full (where "full" denotes the length at the beginning of the
several levels of current interest) length. We believe this approach to be ncarly optimal,
however we have not coded the algorithm using alternative strategies and can only state
this without proof.

.17 -

5. RESULTS AND DISCUSSION
5.1 Timings and Speedups

Presented in Figure 11 are the CPU timings from just the solution phases of these
runs for 40,000 emissions, as the vector length varies from 1,000 to 15,000. All runs use
RANF pseudo-random sequences. A slight effect of vector start-up time is seen at vector
lengths below 4,000. The ETA results ui long vector lengths scale as the ratio of clock
speeds.

2

T 1 T 1
1.6} N
CPU 12F"w. ... CRAY 2o o
TIMES ~— CYBER 205
(SECS) 0.8}~ _
0.4 e CRAYY-MP
' ETA-TOG
0] |] 1
0 3000 6000 9000 12000 15000
VECTOR LENGTH
Figure 11

Solution Phase Timings of Vectorized Gamteb Algorithm.

25

i] I |
201 ETA-10G .
1s —

Sl’EEDUPlo - CYBER 205
B Y et

Sl C RAY2—1
0 l L ! | |
0 3000 6000 9000 12000 15000

VECTOR LENGTH

Figure 12

Solution Phase Speedup vs. Vector Length

To calculate speedups, we divide the scalar solution phase timings (asymptotic
values are given in Table 1) by those timings in Figure 11 to yield Figure 12, "Table |

.18 -

lists execution times for the original scalar algorithm and the revised vector algorithms.
The execution times of the vector algorithm for the CRAY Y-MP use the SCILIB rou-
tines for index generation. Table 1 also shows the asymptotic speedups, calculated by
dividing the solution-phase execution time of the original scalar code by the best times of
the vector algorithms. The asymptotic vector times in Table 1 for the ETA10 and Cyber
205 machines are for a vector length of 40,000 - the largest run that would fit within the
1.7 million words of available memory on the Cyber 205.

Table 1. Execution Times and

Speeduns for the Gamreb Benchmark

Machine Clock Scalar Time Vector Time Speecup
(ns) (secs) (secs)

ETA10-G 6.95 6.11 0.33 18.5
ETAI10-E 10.5 9.20 -
Cyber 205 20.0 13.40 0.90 14.9
CRAY Y-MP/832 6.17 39 0.42 9.20
CRAY-2 4.2 599 1.12 5.35

In the remainder of this discussion we concentrate entirely on the performance of
the ETA-10G and CRAY Y-MP. Despite the 11% difference in cycle times between
these two machines, the scalar code runs about 36% faster on the Y-MP. However, on
the vector version of the code, the ETA-10G is the faster machine by 21%. On both
machines, the times are nearly invariant with initial vector length, differing by less than
10% over the range of vector lengths from 1,000 to 15,000. Also, the execution times for
both scalar and vector algorithms are strictly linear with the number of source emissions.

Note from Table | that there is an approximately 30.5% penalty in scalar perfor-
mance of the ETA machines, when corrected for clock rate. Speedups are almosi con-
stant at about 14 and 18 for Cyber 205 and ETA architectures, respectively, and about 9
and 5 for CRAY Y-MP and CRAY 2 hardware, respectively. Due to their poorer scalar
performance, the speedups are greater on the ETA machines than on the Cyber 205.
Taking V/S = 12 as representative of CRAY Y-MP hardware, and V/§ = 25 as represen-
tative of ETA hardware (ETA hardware, with relatively slower scalar performance, has a
higher V/S ratio than for the Cyber 205), we have calculated *‘best fit’’ values in the
modified Amdahl’s Law of p =0.995 and D =0.234.

We have measured the vectorization levels of Gumteb on the ETA10-G and the
CRAY Y-MP [31} using the hardware performance monitors. The percent vectorization
from this method on the Cray is equal to the number of vector operations divided by the
total number of operations. On the Y-MP/416, this value is 93.0%. However, the per-
cent vectorization required by Amdahl’s law is really based on time, not operation
counts. Additionally, the Cray cun overlap some scalar operations with some vector
operations, 5o the percent vectorization measured by operation counting may not be
accurate. We have also used another method [32], which is based on measuring, in scalar
mode, the amount of time spent in vectorizable loops. When done in this manner, the

-19 -

percent vectorization or: the Y-MP is >99%. On the ETAI10-G, the algorithm spends
86% of the time in the vector hardware. At a speedup ratio of 235, this yields a value of
p =0.993.

Using these values of percent vectorization in Equation (1), we can calculate values
of D based on the speedups we observed for Gamteb. The values of D range from 0.2 to
0.3 and are in good agreement with the values of D we ovotained above. This suggests
that the vectorized versions of Gamteb have effectively amortized the data motion over
large numbers of floating point operations.

These speedup results are in the range of those reported in References 13 and 14,
and 17 through 19, for vectorized photon tracing routines in evacuated enclosures. It is
our belief, based upon speedup results for a variety of sizes (numbers of surfaces)
presented in Reference 17, that this range of speedups would apply with some degrada-
tion to more complex simulations with greater numbers of surfaces.

6. CONCLUSIONS

Vectorization of Monte Carlo on the ETA-10 is best accomplished using bit vectors
because their generation and manipulation is robust and effective. The disadvantage of
this method is that the bit veciors must be repeatedly tested throughout the code and loop
lengths do not decrease in inner nested conditionals. On the Cray systems, Monte Carlo
vectorization is best carried out using gather/scatter operations, because vector lengths do
decrease in inner loops. ‘[his is in spite of the overhead associated with index generation,
which becomes ameliorated by amortizing the overbead over many floating point opera-
tions. The modified version of Amhdahl's Law effectively shows how the data mation
needed to organize the computation in a Monte Carlo algorithm affects the overall per
formance.

Ackaowledgement

We are grateful to ETA Systems and to Colorado State University for the provision
of computer time. We also appreciate the vision of Mr. Jim McCauley who supplied the
initial mctivation for the effort, and Mr. Steve Simonds, for performing the runs on the
ETA10-G.

References

. N. Metopolis, ‘‘The Beginning of the Monte Carlo Method.'* Loy Alamos Science,
15, pps. 122-143 (1987).

2. S. Ulam, R. D. Richtmeyer and J. Von Neumann, ‘‘Statistical Methods in Neutron
Diffusion,'' LAMS-351, Los Alamos National Laboratory report (1947).

3. S. Ulam and N. Metropolis, ‘*The Mon.¢ Carlo Method,'’ J. Am. St Assoc., -4,
335(1949).

10.

11.

12.

13.

14.

15.

16.

-20-

J. H. Curtis, ‘‘Sampling Methods Applied to Differential and Difierence Equa-
tions,’’ Proceedings IBM Seminar on Scientific Computation, IBM Corporation,
New York, NY, pps. 87-109 (Novemoer !9-49).

J. M. Hammersley and D. C. Handsccmb, Monte Carlec Methods, Meuthen, London
(1964).

J. R. Howell, ‘*Application of Monte Carlo to Heat Transfer Problems,’’ Advances
in Hear Transfer, 5, Academic Press, New York, NY (1968).

K. Binder, Applications of the Monte Carlo Method in Stiatistical Physics,
Springer-Verlag, Berlin (1984}.

N. Mewopolis, ‘*“Monte Carlo: In ihc Beginning and Some Great Expectations,””
Monte Carlo Methods and Applications i Neutronics, Photonics and Siatistical
Physics, Cadarache Castle, France (1985).

A. Haji-Sheik, ‘‘Monte Carlo Methods,”’ Handbook of Numerical Hea: Transfer,
John Wiley & Sons, Inc., New York, NY, pps. 673-722 (1988).

T. B. Brown, Vecrtorized Monre Carlo, PhD Dissertation, Department of Nuclear

Engineering, University of Michigan (1981).

W. R. Martin, P. F. Nowak and J. A. Rathiopf, ‘‘Monte Carlo Photon Tracing on a
Vector Supercomputer,”’ /IBM Journal of Research and Development, 30, No. 2
(March 1986).

Sequent Computer Systems, ‘‘Parallel Ray Tracirg Study,”” TN-85-09 (rvp), Rev.
1.0 (198S).

F. W. Bobrowicz, J. E. Lynch and K. J. Fisher, **Vectorized Monte Carlo Photon
Transport,”’ Parallel Computing, I, (1984).

F. W. Bobrowicz, K. J. Fisher, and R. G. Brickner, ‘‘'Vectorized Monte Carlo Neu-
tron Transport,”’ Los Alamos National Laboratory report LA-UR-84-1269 (1984).

J. Briesmeister, ed., ‘*“MCNP: A General Monte Carlo Code for Neutron and Photon
Transport,’’ Los Alamos National Laboratory report LA-7396-M, Rev.2, September
1986.

M. L. Simmons and H. J. Wasserman, ‘‘ A Performance Comparison of the CRAY-2
and CRAY X-MP/416 Supercomputers,’’ Proceedings of the IEEE Supercomputing
'88 Conference, IEEE Society, V/ashington, D.C.. 1989.

D. V. Pryor and P. J. Bumns, ‘A Parallel Monte Carlo Model for Radiative Heat
Transfer,'’ Presented at the 1986 SIAM National Meeting, Boston, MA (July 21-25,
1986).

P. J. Bums and D. V. Pryor, ‘'Vector and Parallel Monte Carlo Radiation IHeat
Transfer,’’ to appear in Numerica! Hear Tranifer.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

3l

-21-

J. Maltby, ‘‘Vectorization of MONT3D,"’ GS511 Final Project Report. Department
of Mechanical Engineering, Colorado State University, Fort Collins, CO (May
1987).

O. M. Lubeck, ‘‘Supercomputer Performance: The Theory, Practice and Results,””
Adv. in Computers, 27, 310(1988).

D. V. Pryor and P. J. Bumns, ‘‘Vectorized Molecular Aerodynamics Simulation of
the Rayleigh Problem,’’ Proceedings, Supercompurting 88, Orlando, FL. {(Nov. 14-
18, 1988).

P. J. Bums and D. V. Pryor, **Vector and Parallel Considerations for the Rayleigh
Problem in Molecular Gas Dynamics,’’ Proceedings, 7th International Conference
on Finite Element Methods in Flow Problems, Hunisville, AL (April 3-7, 1989).

D. B. Heifetz, ‘‘Vectorizing and Macrotasking Monte Carlo Neutral Particle Algo-
rithms,”’ Princeton Plasma Physics Laboratory, PPPL-2427 (April 1987).

G. M. Amdahl, *‘Validity of the Single Processor Approach to Achieving Large-
scale Computing Capabilities,’’ Proceedings of the American Federation of Infor-
mation Processing Societies, Vol. 30, Washington, DC, pps. 483-485 (1967).

Control Data Corporation, CDC CYBER 200 Model 205 Computer System,
Hardware Reference Manual, Centrol Data Corporation Publications and Graphics
Division, Sunnyvale, California (1981).

H. J. Wasserman, ‘‘Los Alamos National Laboratory Computer Benchmarking
1988,"" Los Alamos National Laboratory Report LA-11465-MS (1988).

R. W, Hockney and C. R. Jesshope, Parallel Computers 2, IOP Publishing, Ltd,
Philadelphia, PA, (1988).

Control Data Corporation, CDC CYBER 200 Fortran Version 2 Reference Manual,
Control Data Corporation Publications and Graphics Division, Sunnyvale, Califor-
nia (1981).

Cray Research, Inc., CRAY X-MP Computer Systems Four Processor Mainframe
Reference Manual, Publication HR-0097, Mendota Heights, MN (1986).

Cray Research, Inc., UNICOS Libraries, Macros and Opdefs Rzference Manual.
Publication SR-2013, Cray Research, Inc., Mendota Heights, MN (1987).

R. Koskela, ‘‘Measurement of the Scientific Workload at Los Alamos National
Laboratory Using the CRAY X-MP Hardware Performance Monitor,’’ manuscript
in preparation.

O. M. Lubeck and H. J. Wasserman, ‘‘Measurement of Vectorization Level in For-
tran Programs,'’ manuscript in preparation.

.22.

APPENDIX A

A Note on the Pseudo-random Number Generator

In this appendix we describe a problem encountered in converting this code to its
vector version. This is really an aside to the central issue of constructing a good
algorithm-architecture match, but an important aside nonetheless.

A critical factor in determining whether the scalar algorithm has been correctly
mapped to the vector architecture is the accuracy and convergence properties of the
answers. Indeed, we observed that the results of those bundles transmitted, backscat-
tered, and escaped for the vector and scalar algorith.n converged to different values. The
results from the vector algorithm were close to those of the scalar but were definitely dif-
ferent -- especially in the values which are small. This was disturbing to us, and for some
time we locked for an error in the vector algorithm. Unable to find an error, we eventu-
ally turned our attention to the random number generator.

the random number generator supplied in the scalar code (referred to as the Gamreb ran-
dom number generator). Our routine produced precisely the same sequence of random
numbers as did the scalar random nurnber generator. However, the vector algorithm
accesses the random numbers in different order, as vector operations require a sequence
of random numbers for a single purpose (e.g., determination of flight distance), whereas
in the scalar algorithm, two successive random numbers are used for different purposes
(e.g., determination of flight distance, then Russian Roulette).

To test the random number gencrator, we focused our attention solely on the scalar
code with the Gamteb random number generator. We generated answers using the origi-
nal sequence of random numbers for a variety of number of trials until we had achieved
convergence. We next generated answers using every other random number in the
sequence, and then every third. In Table A.1, the converged quantities of the ratio of bun-
dles backscattered, escaped and transmitted is shown for these three cases along with the
‘‘true’’ answers (obtained from averaging the answers from the ‘‘comrected’’ vector and
scalar codes for one million emissions).

Table A.1.
Converged Values for Problem Solutions
Case Backscattered Escaped Transmitted
Every 0.0630 0.8067 0.2748
Every Other 0.0161 0.8368 0.2357
Every Third 0.0i12 0.8489 0.2262
“True"’ 0.0118 0.8592 0.2173

The original random number generator in the scalar code is the following algorithn:

X, =3X,_, mod 22 ; Xy =2"4+5.

223

This generator has the property of a full cycle: 22 - 1 numbers (see Knuth[A.1] for more
discussion), but is deficient in the sense of having a high serial correlation. Consider the
first few random numbers generated (seen as binary integers):

Xo: 100000000000000000101
X,: 100000000000000001111
X, 100000000000000101101

X5: 100000000000010000111

Thus the first ten or so of the scaled random numbers are all approximately equal to 0.5.
A similar ‘‘run’’ occurs when the scaled values get close to 1.0 and 0.0. In general, such
behavior makes for a poor random number generator, and can lead to problems such as
the one described above. (3 is simply not a good multiplier; it does not sufficiently shift
and add the seed value.) A number of good random number generators are available
[A.1],[A.2], and any of the linear congruential type can be fully vectorized.

We bring up this issue for two reasons. First, one must choose a rziidom number
generator with some care. The nature of Monte Carlo techniques is such that their
‘‘correctness’’ is very difficult to establish. (We speak in practical terms, since no com-
puter prograin is provably correct.) For any given simulation, a large number of results
will appear to be correct, and differences between the results of multiple trials will natur-
ally be seen. Errors due to faulty generation of random numbers may easily masquerade
as legitimate stai :tical difference. Second, the problem is compounded when one enters
the vector and paralle! arenas. In these situations, subtle errors may not show up until the
problem is scaled up to a size which makes it impossible to ‘‘check’ by any other
method; or until some asynchronous (and nonrepeatable) sequence of e¢vents occurs.
Given these difficulties in the vector and parallel regime, a faulty random number gen-
erator may te practically impossible to detect.

Appendix References

A.l1 D. E. Knuth, The Art of Computer Programming, 2d ed., Vol. 2, Addison-Wesley,
1981.

A.2 S. K. Park and K. W. Miller, Random Number Generators: Good Ones are Hard to
Find, Communications of the ACM, Vol. 31, No. 10, October, 1988.

